Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JACC Basic Transl Sci ; 8(9): 1160-1176, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37791301

RESUMEN

Chronic kidney disease is a global health problem affecting 10% to 12% of the population. Uremic cardiomyopathy is often characterized by left ventricular hypertrophy, fibrosis, and diastolic dysfunction. Dysregulation of neuregulin-1ß signaling in the heart is a known contributor to heart failure. The systemically administered recombinant human neuregulin-1ß for 10 days in our 5/6 nephrectomy-induced model of chronic kidney disease alleviated the progression of uremic cardiomyopathy and kidney dysfunction in type 4 cardiorenal syndrome. The currently presented positive preclinical data warrant clinical studies to confirm the beneficial effects of recombinant human neuregulin-1ß in patients with chronic kidney disease.

2.
Cells ; 12(19)2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37830583

RESUMEN

(1) Background and Objective: MicroRNAs (miRs) are biomarkers for assessing the extent of cardiac remodeling after myocardial infarction (MI) and important predictors of clinical outcome in heart failure. Overexpression of miR-30d-5p appears to have a cardioprotective effect. The aim of the present study was to demonstrate whether miR-30d-5p could be used as a potential therapeutic target to improve post-MI adverse remodeling. (2) Methods and Results: MiR profiling was performed by next-generation sequencing to assess different expression patterns in ischemic vs. healthy myocardium in a rat model of MI. MiR-30d-5p was significantly downregulated (p < 0.001) in ischemic myocardium and was selected as a promising target. A mimic of miR-30d-5p was administered in the treatment group, whereas the control group received non-functional, scrambled siRNA. To measure the effect of miR-30d-5p on infarct area size of the left ventricle, the rats were randomized and treated with miR-30d-5p or scrambled siRNA. Histological planimetry was performed 72 h and 6 weeks after induction of MI. Infarct area was significantly reduced at 72 h and at 6 weeks by using miR-30d-5p (72 h: 22.89 ± 7.66% vs. 35.96 ± 9.27%, p = 0.0136; 6 weeks: 6.93 ± 4.58% vs. 12.48 ± 7.09%, p = 0.0172). To gain insight into infarct healing, scratch assays were used to obtain information on cell migration in human umbilical vein endothelial cells (HUVECs). Gap closure was significantly faster in the mimic-treated cells 20 h post-scratching (12.4% more than the scrambled control after 20 h; p = 0.013). To analyze the anti-apoptotic quality of miR-30d-5p, the ratio between phosphorylated p53 and total p53 was evaluated in human cardiomyocytes using ELISA. Under the influence of the miR-30d-5p mimic, cardiomyocytes demonstrated a decreased pp53/total p53 ratio (0.66 ± 0.08 vs. 0.81 ± 0.17), showing a distinct tendency (p = 0.055) to decrease the apoptosis rate compared to the control group. (3) Conclusion: Using a mimic of miR-30d-5p underlines the cardioprotective effect of miR-30d-5p in MI and could reduce the risk for development of ischemic cardiomyopathy.


Asunto(s)
Cardiomiopatías , MicroARNs , Infarto del Miocardio , Isquemia Miocárdica , Ratas , Humanos , Animales , Células Endoteliales/metabolismo , Proteína p53 Supresora de Tumor , Infarto del Miocardio/complicaciones , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/genética , MicroARNs/genética , MicroARNs/metabolismo , ARN Interferente Pequeño
3.
Cardiovasc Res ; 118(2): 556-572, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33483746

RESUMEN

AIMS: Myocarditis is associated with formidable symptoms and increased risk of adverse outcomes. Current approaches mostly rely on symptomatic treatments, warranting novel concepts for clinical practice. The aim of this study was to investigate the microRNA (miRNA) expression profile of Balb/c mice with experimental autoimmune myocarditis (EAM), choose a representative miRNA to antagonize after review of available literature and test its effects on myocardial inflammation in vitro and in vivo. METHODS AND RESULTS: Phase 1: EAM was induced in 12 male Balb/c mice, 10 animals served as controls. After sacrifice, next-generation sequencing (NGS) of the miRNA expression profile was performed. Based on these results, H9C2 cells and human ventricular cardiac fibroblasts exposed to lipopolysaccharide (LPS) were treated with the selected candidate antagomiR-21a-5p. Phase 2: EAM was induced in 48 animals. Thereof, 24 animals were either treated with antagomiR-21a-5p or negative control oligonucleotide in a nanoparticle formulation. Transthoracic echocardiography (TTE) was performed on Days 0, 7, 14, and 21. Histopathological examination was performed after sacrifice. Phase 1: EAM resulted in a significant up-regulation of 27 miRNAs, including miR-21a-5p (log2FC: 2.23, adj. P = 0.0026). Transfection with antagomiR-21a-5p resulted in a significant reduction of TNFα, IL-6, and collagen I in vitro. Phase 2: Treatment with antagomiR-21a-5p, formulated in polymeric nanoparticles for systemic injection, significantly attenuated myocardial inflammation (P = 0.001) and fibrosis (P = 0.013), as well as myocardial 'hypertrophy' on TTE. CONCLUSIONS: Silencing of miR-21a-5p results in a significant reduction of the expression of pro-inflammatory cytokines in vitro, as well as a significant attenuation of inflammation, fibrosis and echocardiographic effects of EAM in vivo.


Asunto(s)
Antagomirs/administración & dosificación , Enfermedades Autoinmunes/terapia , Ecocardiografía , MicroARNs/metabolismo , Miocarditis/terapia , Miocitos Cardíacos/metabolismo , Animales , Antagomirs/genética , Antagomirs/metabolismo , Enfermedades Autoinmunes/diagnóstico por imagen , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/metabolismo , Línea Celular , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Regulación de la Expresión Génica , Humanos , Lipopolisacáridos , Masculino , Ratones Endogámicos BALB C , MicroARNs/genética , Miocarditis/diagnóstico por imagen , Miocarditis/genética , Miocarditis/metabolismo , Miocitos Cardíacos/patología , Ratas , Transcriptoma , Transfección , Función Ventricular Izquierda , Remodelación Ventricular
4.
J Cardiovasc Pharmacol Ther ; 26(6): 702-713, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34342526

RESUMEN

BACKGROUND: Vascular stiffness and endothelial dysfunction are accelerated by acute myocardial infarction (AMI) and subsequently increase the risk for recurrent coronary events. AIM: To explore whether remote ischemic perconditioning (RIPerc) protects against coronary and aorta endothelial dysfunction as well as aortic stiffness following AMI. METHODS: Male OFA-1 rats were subjected to 30 min of occlusion of the left anterior descending artery (LAD) followed by reperfusion either 3 or 28 days with or without RIPerc. Three groups: (1) sham operated (Sham, without LAD occlusion); (2) myocardial ischemia and reperfusion (MIR) and (3) MIR + RIPerc group with 3 cycles of 5 minutes of IR on hindlimb performed during myocardial ischemia were used. Assessment of vascular reactivity in isolated septal coronary arteries (non-occluded) and aortic rings as well as aortic stiffness was assessed by wire myography either 3 or 28 days after AMI, respectively. Markers of pro-inflammatory cytokines, adhesion molecules were assessed by RT-qPCR and ELISA. RESULTS: MIR promotes impaired endothelial-dependent relaxation in septal coronary artery segments, increased aortic stiffness and adverse left ventricular remodeling. These changes were markedly attenuated in rats treated with RIPerc and associated with a significant decline in P-selectin, IL-6 and TNF-α expression either in infarcted or non-infarcted myocardial tissue samples. CONCLUSIONS: Our study for the first time demonstrated that RIPerc alleviates MIR-induced coronary artery endothelial dysfunction in non-occluded artery segments and attenuates aortic stiffness in rats. The vascular protective effects of RIPerc are associated with ameliorated inflammation and might therefore be caused by reduced inflammatory signaling.


Asunto(s)
Precondicionamiento Isquémico Miocárdico/métodos , Infarto del Miocardio/terapia , Isquemia Miocárdica/prevención & control , Rigidez Vascular , Animales , Vasos Coronarios/fisiopatología , Citocinas/metabolismo , Inflamación , Masculino , Reperfusión Miocárdica/métodos , Daño por Reperfusión Miocárdica/prevención & control , Ratas
5.
Int J Mol Sci ; 22(4)2021 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-33670747

RESUMEN

BACKGROUND: Tenascin-C (TN-C) plays a maladaptive role in left ventricular (LV) hypertrophy following pressure overload. However, the role of TN-C in LV regression following mechanical unloading is unknown. METHODS: LV hypertrophy was induced by transverse aortic constriction for 10 weeks followed by debanding for 2 weeks in wild type (Wt) and TN-C knockout (TN-C KO) mice. Cardiac function was assessed by serial magnetic resonance imaging. The expression of fibrotic markers and drivers (angiotensin-converting enzyme-1, ACE-1) was determined in LV tissue as well as human cardiac fibroblasts (HCFs) after TN-C treatment. RESULTS: Chronic pressure overload resulted in a significant decline in cardiac function associated with LV dilation as well as upregulation of TN-C, collagen 1 (Col 1), and ACE-1 in Wt as compared to TN-C KO mice. Reverse remodeling in Wt mice partially improved cardiac function and fibrotic marker expression; however, TN-C protein expression remained unchanged. In HCF, TN-C strongly induced the upregulation of ACE 1 and Col 1. CONCLUSIONS: Pressure overload, when lasting long enough to induce HF, has less potential for reverse remodeling in mice. This may be due to significant upregulation of TN-C expression, which stimulates ACE 1, Col 1, and alpha-smooth muscle actin (α-SMA) upregulation in fibroblasts. Consequently, addressing TN-C in LV hypertrophy might open a new window for future therapeutics.


Asunto(s)
Aorta/fisiología , Tenascina/metabolismo , Remodelación Ventricular , Animales , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Constricción Patológica , Fibroblastos/metabolismo , Ventrículos Cardíacos/metabolismo , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Noqueados , Peptidil-Dipeptidasa A/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Volumen Sistólico , Función Ventricular
6.
Dis Model Mech ; 14(2)2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33619211

RESUMEN

Besides skeletal muscle abnormalities, Duchenne muscular dystrophy (DMD) patients present with dilated cardiomyopathy development, which considerably contributes to morbidity and mortality. Because the mechanisms responsible for the cardiac complications in the context of DMD are largely unknown, evidence-based therapy approaches are still lacking. This has increased the need for basic research efforts into animal models for DMD. Here, we characterized in detail the cardiovascular abnormalities of Dmdmdx rats, with the aim of determining the suitability of this recently established dystrophin-deficient small animal as a model for DMD.Various methods were applied to compare cardiovascular properties between wild-type and Dmdmdx rats, and to characterize the Dmdmdx cardiomyopathy. These methods comprised echocardiography, invasive assessment of left ventricular hemodynamics, examination of adverse remodeling and endothelial cell inflammation, and evaluation of vascular function, employing wire myography. Finally, intracellular Ca2+ transient measurements, and recordings of currents through L-type Ca2+ channels were performed in isolated single ventricular cardiomyocytes. We found that, similar to respective observations in DMD patients, the hearts of Dmdmdx rats show significantly impaired cardiac function, fibrosis and inflammation, consistent with the development of a dilated cardiomyopathy. Moreover, in Dmdmdx rats, vascular endothelial function is impaired, which may relate to inflammation and oxidative stress, and Ca2+ handling in Dmdmdx cardiomyocytes is abnormal.These findings indicate that Dmdmdx rats represent a promising small-animal model to elucidate mechanisms of cardiomyopathy development in the dystrophic heart, and to test mechanism-based therapies aiming to combat cardiovascular complications in DMD.


Asunto(s)
Cardiomiopatías/patología , Sistema Cardiovascular , Modelos Animales de Enfermedad , Distrofina/genética , Distrofia Muscular de Duchenne/genética , Miocardio/patología , Miocitos Cardíacos/patología , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Cardiomiopatía Dilatada/complicaciones , Distrofina/metabolismo , Endotelio Vascular/patología , Fibrosis/patología , Ventrículos Cardíacos/fisiopatología , Hemodinámica , Homeostasis , Humanos , Inflamación , Riñón/metabolismo , Pulmón/metabolismo , Músculo Esquelético/patología , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Peptidil-Dipeptidasa A , Fenotipo , Ratas , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...